

Loopy Lévy flights enhance tracer diffusion in active suspensions

Kiyoshi Kanazawa¹, Tomohiko Sano², Andrea Cairoli³, and <u>Adrian Baule⁴</u>

Transport Phenomena in Complex Systems, Erice 2019

Preprint: arXiv:1906.00608

- ¹ Faculty of Engineering, Information and Systems, University of Tsukuba, Japan
- ² Department of Physical Sciences, Ritsumeikan University, Japan
- ³ Department of Physical Sciences, Imperial College London, UK
- ⁴ School of Mathematical Sciences, Queen Mary University of London, UK

Kanazawa, Sano, Cairoli, Baule

Passive tracer diffusing in an active suspension

- Low Reynolds number swimming
 - Volvox
 - Chlamydomonas
 - E. coli
- Low density

Tracer diffusion in active suspensions: Experimental results

Characteristic features

Loopy trajectories	(a)
Enhanced diffusion	(b)
Non-Gaussian tails of the displacement statistics	(c)
Reversion to Gaussian	(c)
$NGP\simeq \Delta t^{-1}$	(d)

Tracer diffusion in active suspensions: Experimental results

Characteristic features		Τ1	T2	
Loopy trajectories	(a)	1	X	
Enhanced diffusion	(b)	1	×	
Non-Gaussian tails of the displacement statistics	(c)	×	1	
Reversion to Gaussian	(c)	×	1	
$NGP\simeq \Delta t^{-1}$	(d)	X	×	

T1: Phenomenological "active flux": Jepson A, et al. (2013). Phys Rev E, 88:041002(R) T2: Holtsmark-type theory: Zaid & Mizuno (2016). Phys Rev Lett 117:030602

Microscopic model for swimmer-tracer system

$$\frac{d\boldsymbol{x}_i}{dt} = \boldsymbol{v}_{\mathrm{A}}\boldsymbol{n}_i$$
$$\Gamma \frac{d\boldsymbol{X}}{dt} = \sum_{i=1}^N \boldsymbol{F}(\boldsymbol{r}_i, \boldsymbol{n}_i) \qquad \boldsymbol{r}_i \equiv \boldsymbol{x}_i - \boldsymbol{X}$$

• Truncated hydrodynamic force (dipole):

$$\boldsymbol{F} \equiv \begin{cases} \frac{p}{r_i^2} \left[3 \frac{(\boldsymbol{n}_i \cdot \boldsymbol{r}_i)^2}{r_i^2} - 1 \right] \frac{\boldsymbol{r}_i}{r_i} & r_i > d \\ 0 & r_i \le d \end{cases}$$

• In dilute conditions ($ho \ll 1/d^3$) only dipolar far-flow field relevant

Force dynamics: independent kicks

- In dilute conditions tracer dynamics dominated by two-body scattering events
- **F**=sum of random scattering events
- Map multi-particle dynamics onto simpler stochastic process

Langevin dynamics: coloured Poisson noise

• Exact equations of motion:

$$\frac{d\mathbf{x}_i}{dt} = v_{\mathrm{A}}\mathbf{n}_i, \qquad \Gamma \frac{d\mathbf{X}}{dt} = \sum_{i=1}^N \mathbf{F}(\mathbf{r}_i, \mathbf{n}_i)$$

Map exact dynamics on coloured Poisson process

• Langevin dynamics:

$$\Gamma rac{doldsymbol{X}}{dt} = oldsymbol{F}(t), \qquad oldsymbol{F}(t) \equiv \sum_{i=1}^{N(t)} oldsymbol{f}_{oldsymbol{b}}(t- au_i)$$

- Total Poisson intensity $\lambda \to \infty$ as $L \to \infty$
- Force shape function $f_b(t)$: analytical form obtained up to 2nd order (non-closed loops)

Analytical approximation of force shape function

Tracer displacement distribution

• Characteristic scales: $b^* \equiv \left(\frac{|p|}{\Gamma v_{\rm A}}\right)^{1/2}$

$$au_{
m H}\equiv rac{b^*}{v_{
m A}}, \qquad au_{
m C}\equiv rac{1}{
ho v_{
m A}\pi d^2}$$

Scaling behaviour:

$$P_{\Delta t}(|\Delta X|) \propto egin{cases} |\Delta X|^{-5/2} & \Delta t \ll au_{
m H} \ \end{cases}$$

Tracer displacement distribution

• Characteristic scales: $b^* \equiv \left(\frac{|p|}{\Gamma_{VA}}\right)^{1/2}$

$$au_{
m H}\equiv rac{b^*}{v_{
m A}}, \qquad au_{
m C}\equiv rac{1}{
ho v_{
m A}\pi d^2},$$

• Scaling behaviour:

$$P_{\Delta t}(|\Delta X|) \propto egin{cases} |\Delta X|^{-5/2} & \Delta t \ll au_{
m H} \ |\Delta X|^{-5/3} & au_{
m H} \ll \Delta t \ll au_{
m C} \end{cases}$$

Tracer displacement distribution

• Characteristic scales: $b^* \equiv \left(\frac{|p|}{\Gamma_{VA}}\right)^{1/2}$

$$au_{
m H}\equiv rac{b^*}{v_{
m A}}, \qquad au_{
m C}\equiv rac{1}{
ho v_{
m A}\pi d^2},$$

• Scaling behaviour:

$$egin{aligned} P_{\Delta t}(|\Delta X|) \propto egin{cases} |\Delta X|^{-5/2} & \Delta t \ll au_{
m H} \ |\Delta X|^{-5/3} & au_{
m H} \ll \Delta t \ll au_{
m C} \ e^{-\Delta X^2/2\sigma^2} & \Delta t \gg au_{
m C} \end{aligned}$$

In 2D:
$$\alpha_{\rm H} = 2$$
, $\alpha_{\rm S} = 4/3$

Tracer diffusion in active suspensions: Experimental results

Characteristic features		Τ1	T2	ОТ
Loopy trajectories	(a)	1	X	1
Enhanced diffusion	(b)	\checkmark	X	1
Non-Gaussian tails of the displacement statistics	(c)	×	1	1
Reversion to Gaussian	(c)	X	1	1
$NGP\simeq \Delta t^{-1}$	(d)	X	X	1

Conclusions

- We derived a stochastic process that captures all empirical observations of the tracer dynamics
- First microscopic foundation of Lévy flight dynamics
- Process relates exponents of the power-law tails to the hydrodynamic interactions
 - Holtsmark regime: $\alpha_{\rm H} = 1 + D/\nu$, where ν is leading exponent in r
 - Scattering regime exponent $\alpha_{\rm S}$ depends on net displacement after one loop
- Crossover between Lévy flight and Gaussian regimes governed by time scale $\tau_{\rm C} \sim \frac{1}{\rho}$
 - Long-lived Lévy flight regime at low swimmer density
 - Localized diffusion at high swimmer density

Preprint: K. Kanazawa, T. Sano, A. Cairoli, and A. Baule, arXiv:1906.00608 (2019)